The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications

نویسندگان

  • Jasmine Foo
  • Xiaoliang Wan
  • George E. Karniadakis
چکیده

Stochastic spectral methods are numerical techniques for approximating solutions to partial differential equations with random parameters. In this work, we present and examine the multi-element probabilistic collocation method (ME-PCM), which is a generalized form of the probabilistic collocation method. In the ME-PCM, the parametric space is discretized and a collocation/cubature grid is prescribed on each element. Both full and sparse tensor product grids based on Gauss and Clenshaw-Curtis quadrature rules are considered. We prove analytically and observe in numerical tests that as the parameter space mesh is refined, the convergence rate of the solution depends on the quadrature rule of each element only through its degree of exactness. In addition, the L error of the tensor product interpolant is examined and an adaptivity algorithm is provided. Numerical examples demonstrating adaptive ME-PCM are shown, including low-regularity problems and long-time integration. We test the ME-PCM on two-dimensional Navier-Stokes examples and a stochastic diffusion problem with various random input distributions and up to 50 dimensions. While the convergence rate of ME-PCM deteriorates in 50 dimensions, the error in the mean and variance is two orders of magnitude lower than the error obtained with the Monte Carlo method using only a small number of samples (e.g., 100). The computational cost of ME-PCM is found to be favorable when compared to the cost of other methods including stochastic Galerkin, Monte Carlo and quasi-random sequence methods. 2008 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-element probabilistic collocation for sensitivity analysis in cellular signalling networks.

The multi-element probabilistic collocation method (ME-PCM) as a tool for sensitivity analysis of differential equation models as applied to cellular signalling networks is formulated. This method utilises a simple, efficient sampling algorithm to quantify local sensitivities throughout the parameter space. The application of the ME-PCM to a previously published ordinary differential equation m...

متن کامل

New evolution equations for the joint response-excitation probability density function of stochastic solutions to first-order nonlinear PDEs

By using functional integral methods we determine new types of differential equations satisfied by the joint response excitation probability density function associated with the stochastic solution to first-order nonlinear scalar PDEs. The theory is developed for arbitrary fully nonlinear and for quasilinear first-order stochastic PDEs subject to random boundary conditions, random initial condi...

متن کامل

Probabilistic collocation method for flow in porous media: Comparisons with other stochastic methods

[1] An efficient method for uncertainty analysis of flow in random porous media is explored in this study, on the basis of combination of Karhunen-Loeve expansion and probabilistic collocation method (PCM). The random log transformed hydraulic conductivity field is represented by the Karhunen-Loeve expansion and the hydraulic head is expressed by the polynomial chaos expansion. Probabilistic co...

متن کامل

Multi-element probabilistic collocation method in high dimensions

We combine multi-element polynomial chaos with analysis of variance (ANOVA) functional decomposition to enhance the convergence rate of polynomial chaos in high dimensions and in problems with low stochastic regularity. Specifically, we employ the multi-element probabilistic collocation method MEPCM [1] and so we refer to the new method as MEPCM-A. We investigate the dependence of the convergen...

متن کامل

Stochastic analysis of unsaturated flow with probabilistic collocation method

[1] In this study, we present an efficient approach, called the probabilistic collocation method (PCM), for uncertainty analysis of flow in unsaturated zones, in which the constitutive relationship between the pressure head and the unsaturated conductivity is assumed to follow the van Genuchten-Mualem model. Spatial variability of soil parameters leads to uncertainty in predicting flow behavior...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 227  شماره 

صفحات  -

تاریخ انتشار 2008